DM 6. A rendre par mail à <u>ICNJBD@laposte.net</u> au plus tard Mardi 26 Mai 12heures

Pour faire ce Dm on peut s'inspirer largement des TD 33 et 34 et de leurs corrigés sur mathslyx.free.fr

Exercice 1

Soit la fonction f définie sur \mathbb{R} par : $f(x) = (x+1)^2 - 4$.

- 1. Déterminer l'expression développée de f(x).
- 2. Déterminer l'expression factorisée de f(x).
- 3. Compléter le tableau de valeurs ci-dessous :

х	-4	-3	-2	-1	3	1	0	1	2
					$-\frac{1}{4}$	$-\frac{1}{2}$			
f(x)									

- 4. Placer les neuf points issus de ce tableau de valeurs dans le graphique 1 de la feuille annexe puis construire au mieux la parabole représentant la fonction f
- 5. Résoudre graphiquement :
 - a. f(x) = 0
 - b. $f(x) \le 5$
- 6. En utilisant la question 2. Résoudre par un calcul f(x) = 0
- 7. a. Factoriser f(x)-5 . (On utilisera l'expression initiale de f(x)).
- 7. b. Résoudre alors par un calcul l'inéquation $f(x) \le 5$.

Exercice 2

Soit la fonction f définie sur \mathbb{R}^* par : $f(x) = \frac{5}{x}$

1° a. *x* désigne un réel quelconque.

On considère les points $M\left(x;f(x)\right)$ et M ' $\left(-x;f(-x)\right)$ de la représentation graphique de f

Déterminer les coordonnées du milieu de $\left[MM'
ight]$

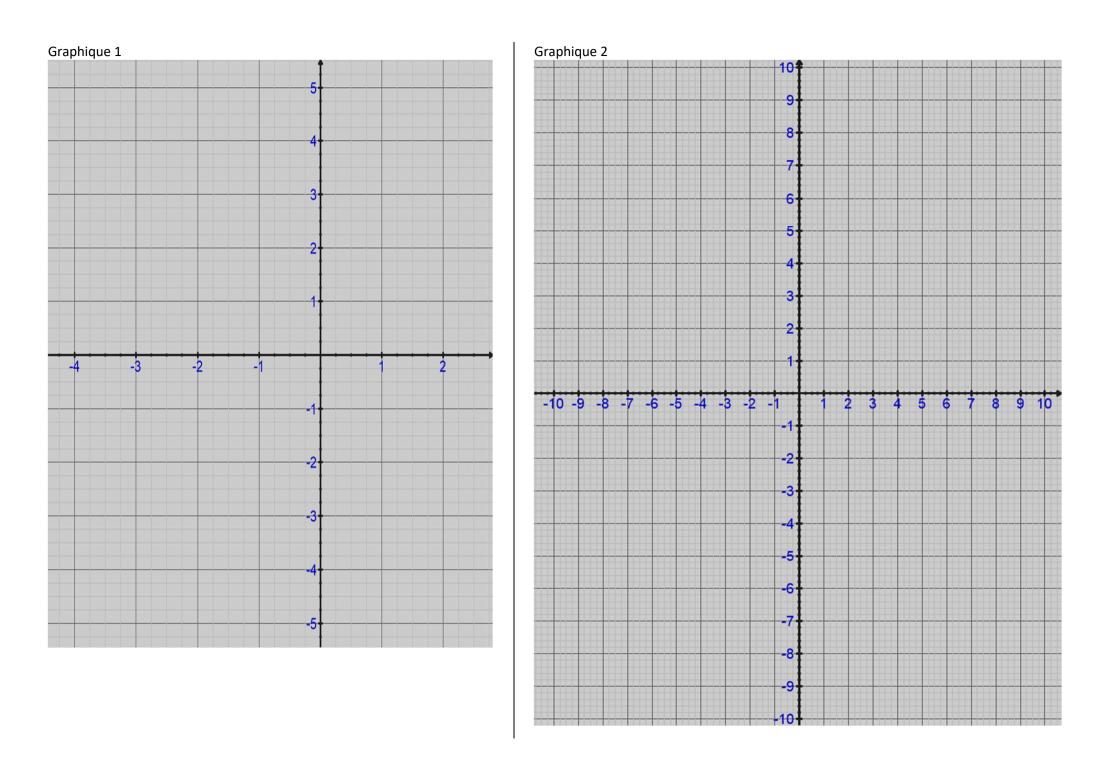
- b. Que peut-on en déduire pour la représentation graphique de la fonction $\,f\,$?
- 2° Compléter le tableau de valeurs ci-dessous :

x	0,5	0,75	1	1,5	2	4	6	8	10
f(x)									

3° Placer sur le graphique 2 de la feuille annexe les 9 points à partir des valeurs du tableau précédent.

Relier ces points pour obtenir une première « branche d'hyperbole » représentant la fonction $\,f\,$

Puis en utilisant la conclusion obtenue en 1° b, placer les 9 points de cette représentation graphique d'abscisses -0,5 ; -0,75 ... ; -10.


Relier ces points pour obtenir une deuxième « branche d'hyperbole » représentant la fonction $\,f\,$

4° A partir du graphique donner le tableau de variations de f sur $]-\infty;0[\ \cup\]0;+\infty[$

5° On considère la fonction g définie par $g(x) = \frac{x}{2}$

- a. Construire la représentation graphique de $\,g\,$ sur le graphique de la feuille annexe.
- b. Résoudre graphiquement l'équation f(x) = g(x)
- c. On rappelle la technique du produit en croix : $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$

Résoudre par le calcul l'équation f(x) = g(x)

